< upsun ‘ (=« shopware

The definitive guide to
Shopware performance
on Shopware Paa$S

cCe

9 upsun | Formerly Platform.sh

Document information

LR The definitive guide to Shopware performance
on Shopware PaaS

Authors e \incenzo Russo

e \incent Robert

Reviewers e Gauthier Garnier

Publishers Upsun
LU |11 (September 2025)

Sl ELEN 30 September 2025

SELl © 2025 Upsun. All rights reserved.

Keywords

Shopware, Upsun, PaaS, performance, caching,
Blackfire, profiling

SR fobian.meissner@upsun.com

©10 - 2025 Upsun. All rights reserved.

mailto:fabian.meissner@upsun.com

9 upsun | Formerly Platform.sh

Table of contents

Document information......

Executive summary....... - - - S
(] o X1 Y70 PP

Who should read this paper and why
CommonN ChalleNQGES WE'VE SE N sssass s essass s ses s asssessanes
LA QY g TS o= 01T =] PP
If you're asking QUESTIONS [KE.........cueeeeceeteeeeccereeeee et saens

How Shopware really performs (and why it matters)...
Performance IS @ Variable...... et s s ssssssseaes
Real-world example: debug-l1evel logging. ... neereeseesesesseeeessessessessessesees
Common pitfalls behind performancCe ISSUES......ovreveeesseseese et eessesseeessesesssssssnes 10
(@7= Lo g L= 1S3 (] TP 10
SUIMIMIAIY cetiteereeeeetessessssesseessessesesssssss st sss s s sss s sssssssss st st sssseseesnssnssnsansssssssnsansesssesnssnsssssnsansansans

Understanding the infrastructure options...... - S 1"
Grid Plans (XL, 2XL, 4XL) c.ereerreereerssesseesseesesssssssessssssesssesssnss 12
Dedicated Grid hosts (DGH-16, DGH-32, DGH-64, DGH-128)......ccccoovermreveresernenne 12
Dedicated plans (D-12, D-24, D-48, D-96, D-192)......ccoonrnrermrerrerrerrseessesseesssessessessseenns 13
(Do [Tor=Tu=To ISy o] [aled 11 1Sy (=Y TSP 13
(@ aTeToXS T aTe Ru a =R gTe] 1] o 11T o OO 14

Best practices for high-performance Shopware. - - 14
Infrastructure and runtime coNfigUratioN.........oeeececeescesee e 14
(@7 Lo a1 g Te JES1 0 =1 1Yo)OS 15
Extension and plugin ManagemeEnti...... s ssssssssssssessessenns 17
Admin configuration and appliCation l0GIC.....c.eenreenreereerreesseeseeseeeseesseesseeseeseeasees 17
Performance as @ diSCIPIINE .. ettt s s s s s aneaes 18
Preparing for CritiCal @VENTS...... ettt et ss s sseenas 18
SUIMIMIAIY ceeeeeeeeeetetsesssssssessesssessessesssssssess s s s sssssesssssss s ss s s s seesnesnsssssss st snsansesseesnsssssnsassassansensnses 19

Load testing methodology. - - - S 19
i keTe][TaTer=TaTo RSYeT=T o =Yg To T e [T T | o 0N 19
CoNfIGUration STrat@QY ... eereereeereereeseeseeereesseese s s s e ss s s es s 20
LI Lo 1= o 0 a1 o TSP 21
S TeT=T aT= T Lo ox=1 11 o) =1 o] o 00O 21
SUIMIMIAIY ceeetereeteteessessessesse e asessssss st ess s s s e sss s s s s s s s e see s s s s ess e ens e s sne s ans s s ns s s s senseas 22

Using Blackfire to identify bottlenecks....... - S 22
WhY Profiling Matters... ettt sss st s s s ssesssassnsas 23

©10 - 2025 Upsun. All rights reserved. 3

9 upsun | Formerly Platform.sh

How 10 profile @ SNOPWAre Page..... st ssssssssssssns 23
Shopware-specific insSights in BlaCKfire......o e essessessesssessessnenns 24
Common bottlenecks in SNOPWAre ProjeCtS....eeeieesssssssssesseessesssssssssssssns 24
Continuous Profiling (OPLIONAI) ... s sssssssssesans 25
Integrating BIackfire iNtO Cl/CD...creesseseineessesssssssessssssssessssssssssssssssssssssssssssesas 25
Analytics extension INAUCES AOWNTIME........oeeereerererereeereese s ssesessssesseseans 25
Summary: Blackfire in your Shopware toOlbOX.........ceeeeveerernerveererereeesesessessessssesseeseens 26
Performance results across plans...... 27
AV 0 aToY Tt T eTo] | L= o (=Y o TP 27
SUMMATY OF FESUILS ...ttt sesss s sssssse s s ssssssssssssesssssnsssssssssssssesssssnssnsans 28
L@ o TT=T Y= T 1P 28
Orders Per day DY Plan... s ssssses e sesessssssssssssessessessessessssssnsnns 30
(1 aTeTo T aTe IRu aT=N g Te |)l o] F- 1 o 00N TTPPT 31
Lessons learned from the field..... - - — 32
Configuration must be iNteNtioNal....... e sseeas 32
Plugin usage requIres VIGIANCe........eereeneeneeeeesessseseesessessssssessesssssssssessessssssssessssaees 32
Caching is central, but often undervalued....... e 33
Performance testing mMust be realiStiC.......nnerereeeseseseeeesessesseesessessseeeaes 33
Operational discipline drives reSiliENCE....... v ssssnes 34
Collaboration IS @SSENTIAL ...t 34
ST 1 = 78TO 34
Conclusion and next steps.. .. 35
What YOU CAN AO NEXT....icecececececeetses ettt s s st s s s s ssssssssnsenens 35
Pre-launch readiness ChECKIIST.......vrenrrreresee st sssssesssssssssssssssssnens 36
Final note.... ..38
Appendix 39
Load testing setup and ParameEtErsS..... s ssss st esssans 39
Performance metriC CalCUlatioNS...... e ssssensees 40
Sample configuration snippet (.platform.app.yaml).....eeeeeeceeeereeeeeee s 41
Shopware Performance tWEAKS........ovecrerereesesetsses et sssessessssssssessssssssssssesssssssssesnes 41
Recommended tOO0IS aNd rESOUITES....... et sessessessessesesesenes 43

©10 - 2025 Upsun. All rights reserved. 4

9 upsun | Formerly Platform.sh

Executive summary

This white paper shares the results of a rigorous load testing campaign on
Shopware PaaS, a managed e-commerce platform built on Upsun and tailored
specifically to run Shopware at scale. But beyond benchmark data, this document
is a practical guide: it distills the lessons we've learned about optimizing Shopware
performance, identifying bottlenecks, and running real-world storefronts
sustainably.

The goal of these tests was to explore how Shopware behaves under real-world
traffic patterns, and to surface actionable insights for building fast, resilient
storefronts. Our findings confirm that the true bottlenecks often lie not in the
infrastructure, but in how Shopware is configured, extended, and deployed. In
short: Shopware is a demanding software, and running it well requires a deliberate,
performance-first approach.

To that end, this white paper does two things:

1. It quantifies how Shopware PaaS performs under load across multiple
infrastructure configurations, offering real numbers on response time, order
throughput, CPU saturation, and failure rates.

2. Itteaches technical practitioners—developers, architects, and DevOps
teams—how to optimize Shopware itself: from caching strategy and
container sizing to load test planning, cache prewarming, and using tools
like Blackfire to diagnose and fix application-level inefficiencies.

Throughout, we emphasize key architectural truths:

m “Never blindly trust your code (or someone else’s).” Extensions are rarely
optimized for your exact workload.

m Cache everything. Backend calls, dynamic queries, and per-customer
customisations are expensive.

m Test, measure, and plan for real traffic. Assumptions cost money; data
savesit.

Shopware PaaS exists to give teams the best possible foundation: a Upsun- native
environment with CI/CD, staging, observability, and elastic scale built in.

©10 - 2025 Upsun. All rights reserved. 5

9 upsun | Formerly Platform.sh

But infrastructure is only half the story. The rest depends on what you run—and
how you run it.

This paper is for those who want to run Shopware right.

Glossary

This glossary explains key terms and acronyms used throughout the paper. Itis
intended as a quick reference for technical readers who want clarity on
performance metrics, infrastructure concepts, and platform terminology.

Term Definition

VU Virtual User - A simulated user in load
testing tools like K6.

TTFB Time to First Byte - The time it takes to
receive the first byte of a server response. A
key performance indicator for backend and
network responsiveness.

p95 95th Percentile - A statistical measure
showing that 95% of response times were
faster than this value. Used to assess
worst-case performance under normal
conditions.

ERP Enterprise Resource Planning — Software
systems for managing business operations
like product data, stock, pricing, and orders.

CDN Content Delivery Network — A network of
servers (e.g., Fastly) that deliver cached
content closer to users, reducing latency.

cl/cD Continuous Integration / Continuous
Deployment - Practices for automating
code testing, integration, and delivery to
production.

©10 - 2025 Upsun. All rights reserved. 6

9 upsun | Formerly Platform.sh

Who should read this paper and why

This white paper is written for technical professionals working with Shopware—
whether you're building, scaling, or maintaining storefronts based on Shopware 6.
If you're a developer, lead developer, software architect, or DevOps engineer,
this document is for you.

Shopware itself is a flexible and powerful platform. But as many experienced teams
know, achieving great performance in production often depends less on Shopware
core and more on how the projectis structured, extended, and deployed. That’s
where this paper aims to help.

Common challenges we’ve seen

Across dozens of Shopware projects, several recurring issues surface—regardless
of the underlying infrastructure:

m Plugin complexity and fragility
Custom or third-party plugins frequently become the weak link. They're
often poorly optimized, hard to debug, and difficult to support—especially
under load.

m Poor cache invalidation behavior
ERP updates, imports, or admin changes can trigger mass cache purges,
causing backend spikes and latency bursts. Without careful planning or use
of soft purges, this becomes a recurring pain.

m Composable frontends and uncacheable APIs
Shopware’s shift toward headless architectures has outpaced its native
caching model. The Store API, relying heavily on POST requests, isn't best
suited for HTTP caching through tools like Fastly or Varnish. Workarounds
exist, but are not always robust or standardized.

m Lack of DevOps standardization
Teams often reinvent the wheel when it comes to deployment, monitoring,
staging, and rollback workflows—wasting precious engineering hours on
infrastructure instead of product.

©10 - 2025 Upsun. All rights reserved. 7

9 upsun | Formerly Platform.sh

These issues are not due to bad intentions—they stem from complexity. Shopware
is modular, customizable, and capable, but without discipline and the right tools,
performance suffers. Shopware PaaS was designed to change that.

Why this paper exists
Built on Upsun, Shopware PaaS offers:

m Enterprise-grade infrastructure with scaling, HA, and performance SLAs.

m Standardized developer workflows: Git-based environments, CI/CD, and
rollback built in.

m Tools for diagnosis and performance tuning, including native support for
Blackfire.

m Best-practice templates and architectural guidance for building stores that
perform.

This paper combines data, experience, and opinionated guidance to help you:
m Avoid common mistakes.
m Optimize your deployments.

m Better understand the trade-offs behind infrastructure, plugins, caching,
and APl usage.

If you're asking questions like...
m How do we avoid breaking performance when adding new features?
m Which infrastructure tier do we really need?
m How do we use Blackfire to improve performance?
m What can we cache, and what should we avoid invalidating?
m How do we prepare our Shopware store for real-world scale?
..then you’re exactly who this paper is for.

Read on to explore the infrastructure options, testing methodology, and proven
best practices that will help you run Shopware right.

©10 - 2025 Upsun. All rights reserved. 8

9 upsun | Formerly Platform.sh

How Shopware really performs (and why it matters)

Shopware, like any complex web application—and especially as an e-commerce
platform—can be fast or painfully slow. Performance is not a fixed trait of the
system; it depends entirely on how it's configured, extended, and maintained. The
difference between a snappy storefront and an unresponsive one often comes
down to decisions made during development and integration.

Performanceis a variable

A recent Shopware 6 performance benchmark report by Tideways (Q12025)
analyzed hundreds of real-life projects and found a 10x difference in Time-to-
First-Byte (TTFB) across similar page types. For example, product search pages—
an essential element of any storefront—ranged from under 200ms to well over 2s
depending on the project.

This wide disparity reflects what we see in practice: the software isn’t inherently
slow, but itis highly sensitive to how it’s used. Plugins, logging levels, integration
design, underlying components (e.g., OpenSearch), admin configuration—each
can shift a site’s performance profile dramatically.

Real-world example: debug-level logging

In late 2024, we received a support ticket about a Shopware storefront suffering
from sudden, severe slowness. Some pages were taking over 10 seconds to load.
In extreme cases, requests exceeded 3 minutes.

Using Blackfire’s Alerting and Profiling capabilities, we quickly identified the root
cause: the PayPal plugin was running with DEBUG-level logging enabled. Under
heavy traffic, this configuration overwhelmed the disk with write operations,
causing |/O contention as processes queued to write their own logs. The result was
widespread performance degradation. Once debug mode was disabled, response
times recovered almost immediately.

This case illustrates a simple but recurring theme: a small misconfigurationin a
third-party extension can destabilize the entire stack.

©10 - 2025 Upsun. All rights reserved. 9

https://tideways.com/profiler/blog/shopware-6-performance-benchmark-report-q1-2025

9 upsun | Formerly Platform.sh

Common pitfalls behind performance issues

Beyond logging, we routinely identify other causes of performance degradation:

m ERP integrations that trigger cache invalidations
Inventory and product updates—especially when unbatched—cause
sweeping invalidations in Shopware’s cache layers, resulting in spikes in
backend load and frontend latency.

e Excessive personalization

Serving unique content—such as customer-specific pricing or postal code-
based adjustments—can reduce cache efficiency and increase
infrastructure load. Where possible, identify shared elements across visitor
segments and cache them using reusable keys.

m Lack of performance budget
Teams deploy features or plugins without defining acceptable performance
thresholds, leading to slow creep over time.

In other words: Shopware’s performance is everyone’s responsibility. Every
feature, every integration, every checkbox in the admin panel can have an outsized
effect on what your customers experience.

Cacheis king

No matter how efficient your custom code is, nothing beats a fast cache. Whether
at the edge (Fastly), on the application side (Symfony HTTP cache), or in the
database/query layer (Redis, Doctrine metadata, etc.), caching is the primary
strategy for sustainable performance.

This is especially true given how Shopware handles dynamic content and API
usage. The more often content can be served from cache, the less pressure on
CPU, I/O, and application rendering. And the higher your chances of delivering the
sub-second experience customers expect.

©10 - 2025 Upsun. All rights reserved. 10

9 upsun | Formerly Platform.sh

Dozens of studies correlate every second of added load time with adrop in
conversion rate.' For Shopware stores competing in a crowded retail market,
performance isn’t just a technical concern—it’s acommercial one.

Summary

Shopware can perform extremely well, but only if treated with care:
m Measure everything, especially when introducing plugins or integrations.
m Define performance budgets—dont assume “fast enough” is good enough.
m Use tools like Blackfire to catch regressions early.

m Design ERP and import flows for efficiency, and batch updates wherever
possible.

m Cache everything you safely can.

The rest of this paper will show you how we quantify performance, choose
infrastructure, and apply best practices to get the most out of Shopware in
production.

Understanding the infrastructure options

Running Shopware efficiently requires more than good application code—it
demands the right infrastructure behind it. Shopware PaaS is built on Upsun,
which offers several infrastructure tiers tailored to different performance,
scalability, and isolation requirements. This section explains how these
infrastructure types work, what differentiates them, and how to choose the best
option based on your workload.

"For example: SOASTA reported that a 1-second delay in mobile page load time can impact retail
conversions by up to 20%. Cloudflare found that pages loading in 2.4 seconds had a1.9%
conversion rate, dropping to 0.6% at 5.7 seconds. Portent showed that every second counts: a 1s
load time yielded ~40% conversion, falling to ~20% by 5s.

©10 - 2025 Upsun. All rights reserved. "

https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/load-time-to-conversion-statistics/
https://www.cloudflare.com/learning/performance/more/website-performance-conversion-rates/
https://www.portent.com/blog/analytics/research-site-speed-hurting-everyones-revenue.htm

9 upsun | Formerly Platform.sh

Grid plans (XL, 2XL, 4XL)

The Grid infrastructure is a shared-resource model where your project runs inside
isolated containers on virtual machines (VMs) shared with other customers. Each
service—application, database, Redis, workers—is isolated into its own container,
drawing from a predefined CPU and RAM quota.

m Isolation: Logical (container-based), but shares VM-level resources.
m Best for: Entry-level and small-to-medium projects.
m Scaling: Vertical only (upgrade to a larger plan).

m Considerations: Cost-effective, but performance predictability is limited
under extreme load.

Dedicated Grid hosts (DGH-16, DGH-32, DGH-64, DGH-128)

The DGH tier maintains the container-based model but shifts from shared to
dedicated VMs. All resources on the VM are exclusive to your project, enabling
burst capacity and more consistent performance.

In addition to dedicated resources and full CPU availability, DGH plans offer further
architectural advantages. All containers are co-located on the same host machine,
eliminating inter-service network latency and improving communication
efficiency— particularly beneficial for services like Redis that rely on frequent
internal calls. Moreover, DGH plans provide significantly higher memory limits than
standard Grid plans, making them ideal for workloads involving large datasets,
memory-intensive caching, or demanding product catalogues.

m Isolation: Dedicated compute, shared storage and network.

m Best for: Mid-sized to high-traffic storefronts needing predictable CPU
access.

m Scaling: Vertical scaling by moving to a higher DGH plan.

m Performance tip: Burstable containers can leverage full VM capacity under
load, especially for peak-hour resilience.

©10 - 2025 Upsun. All rights reserved. 12

9 upsun | Formerly Platform.sh

Dedicated plans (D-12, D-24, D-48, D-96, D-192)

The Dedicated tier consists of three fully dedicated VMs configured for high
availability. Services are distributed across nodes using Shopware-aware patterns:

m MySQL in multimaster cluster configuration.

m Redis with multi-master setup.

m Redundant application containers.

m Isolation: Fully dedicated VMs, including compute, network, and storage.

m Best for: Production environments with high concurrency and uptime
demands.

m Scaling: Zero-downtime Vertical scaling via larger plan sizes.

m Resilience: Redundancy ensures no single point of failure.

Dedicated split clusters

Dedicated Split separates concerns explicitly: three core nodes handle backend
services (DB, cache, queues), while three or more web nodes serve application
traffic.

m Isolation: Maximum—dedicated compute, storage, and service separation.

m Best for: Enterprise-grade setups with high frontend concurrency or traffic
spikes.

m Scaling: Core nodes scale vertically; web nodes scale both vertically and
horizontally for flawless dynamic auto-scaling.

m Advantage: Allows for fine-grained tuning and load segregation between
backend and frontend responsibilities.

©10 - 2025 Upsun. All rights reserved. 13

9 upsun | Formerly Platform.sh

Choosing the right option

Each infrastructure model comes with trade-offs. Here's how to think about them:

Scenario Recommended option

Evaluation, MVP, or low-traffic site Grid (XL-4XL)
Growing production store with peaks DGH (DGH-16 to DGH-64)
High traffic, reliability-critical Dedicated (D-24+)

Multi-AZ, heavy concurrency Dedicated Split

Remember: infrastructure is only part of the performance equation. Even the best
hosting can be undercut by inefficient plugins, slow custom code, or
misconfigured caches. The sections that follow will walk through how to optimize
those variables—regardless of which tier you're on.

Best practices for high-performance Shopware

Achieving reliable performance in Shopware is not a matter of chance, but of
deliberate architecture, disciplined development, and consistent operational
practices. While Shopware is capable of excellent performance, it requires active
attention to application structure, infrastructure sizing, cache strategy, and
runtime configuration.

This section outlines the principles and techniques that have proven most
effective in sustaining performance across real-world Shopware PaaS projects.

Infrastructure and runtime configuration

One of the foundational elements of Shopware performance lies in how the
application is sized and deployed. Upsun allows for precise control over memory
allocation and CPU resources through the use of runtime hints. These should not
be left at defaults. Instead, developers are encouraged to set memory usage

expectations explicitly in .platform.app.yaml, enabling the platform to
optimize PHP-FPM concurrency settings accordingly.

©10 - 2025 Upsun. All rights reserved. 14

https://fixed.docs.upsun.com/languages/php/fpm.html

9 upsun | Formerly Platform.sh

Maintaining CPU usage below 70% under load is advisable to preserve headroom
during peak traffic events. Infrastructure tiers should be selected not only based
on average load, but also with burst capacity and business seasonality in mind.
Many performance issues arise not from insufficient resources per se, but from
failure to anticipate the operational profile of the store under real-world conditions.

Caching strategy

Caching is a critical pillar of Shopware performance, particularly in high-traffic
environments. It must be designed, not assumed. HT TP caching, application-side
caching (such as Symfony’s HTTP cache), and object caching (e.g. Redis) must
work in concert.

Where possible, content should be made cacheable by design. This includes
structuring endpoints to use GET rather than POST methods where appropriate,
ensuring consistent cache headers, and avoiding patterns that lead to cache
fragmentation (e.g. user-specific variations of product or category pages).
Prewarming the Fastly cache of the most critical pages after deployments or
content imports ensures that traffic is not served cold, avoiding costly backend
rendering during critical periods.

Itis also important to validate that the cache is functioning as intended. This can
be done by inspecting HTTP response headers, particularly the X-Cache header
provided by Fastly. A HIT value indicates that the response was served from cache,
while a MISS suggests a cache bypass or expiration. Persistent or unexpected
MISS responses should be investigated promptly, as they may signal
misconfiguration, over-aggressive cache invalidation, or content that is not
cacheable due to dynamic query parameters or incorrect headers.

Equally important is managing cache invalidation responsibly. Unbatched product
updates or poorly scheduled ERP synchronisations can result in widespread cache
purges, leading to backend saturation and degraded user experience. Where
invalidation is necessary, techniques such as soft purges and deferred purging
intervals can help mitigate their impact.

In real-world deployments, we have observed large Shopware installations
generating hundreds of millions of cache invalidation requests per day. In such
cases, the system spends a disproportionate amount of its resources regenerating
and invalidating cache entries rather than serving users. This pattern not only

©10 - 2025 Upsun. All rights reserved. 15

9 upsun | Formerly Platform.sh

consumes infrastructure inefficiently, but also results in a noticeably degraded
browsing experience. Reducing unnecessary product updates—or throttling and
batching them—can significantly improve system performance and ensure a
smoother, more stable storefront.

Advanced cache features in Shopware

Caching is not just about volume; it's about precision. Beyond the default HTTP
cache mechanisms, Shopware now supports more advanced techniques that
enable high performance even in dynamic storefront contexts. Two of the most
important are ESI (Edge Side Includes) and soft purges.

ESI (Shopware = 6.6.10.0) lets developers split page rendering into independently
cacheable fragments. Thisis ideal when only parts of a page—like dynamic menus
or widgets—need frequent updates. ESI allows most of the page to be cached,
improving hit ratios and keeping response times consistent even for complex
layouts.

Soft purge (Shopware = 6.4.15.0) is essential for managing large-scale cache
invalidations. Rather than immediately deleting expired entries, it marks them as
stale but still serves them until refreshed. The first request triggers regeneration in
the background, allowing users to receive functional content without backend
spikes. This dramatically smooths out the impact of ERP updates and other
cache-heavy operations—and often means the difference between resilience and
outage.

Used together, these features unlock more sophisticated caching strategies,
allowing developers to achieve faster storefronts without compromising on
freshness or flexibility.

To get the most from these features, two key strategies should guide cache
implementation:

m Maximize cache coverage for anonymous traffic.
While not every page is cacheable—search results being a common
exception— most storefront pages can and should be served entirely from
cache. This reduces load from search engine crawlers, boosts SEO
performance, and delivers faster, more consistent page loads. It also frees
backend infrastructure to focus on personalised or transactional content

©10 - 2025 Upsun. All rights reserved. 16

https://developer.shopware.com/release-notes/6.6/6.6.10.0.html#introduce-edge-side-includes-esi-for-header-and-footer
https://developer.shopware.com/docs/guides/hosting/infrastructure/reverse-http-cache.html#fastly-soft-purge

9 upsun | Formerly Platform.sh

such
as checkouts or recently updated product data.

m Optimize cache behaviour for logged-in users.
Cache coverage typically drops when a user creates a session (e.g., by
adding an item to the basket). Since Shopware 6.6.10.0, however, it’s possible
to cache session fragments using ESI blocks for elements like headers and
footers. This enables partial caching even during active sessions—extending
performance gains deeper into the customer journey.

Used together, these strategies make caching not only fast and fresh, but resilient
across all visitor states.

Extension and plugin management

In our experience, performance regressions are most frequently traced to
third-party or custom plugins. These may introduce costly hooks, register
redundant services, or execute blocking logic during template rendering or
checkout flows. Performance-aware development and QA processes must include
plugin impact assessment—both at the time of installation and during updates.

Even unused plugins may still consume resources, depending on how they are
structured. Developers should routinely audit the full plugin stack, remove
obsolete packages, and validate that active plugins are not introducing avoidable
inefficiencies.

Admin configuration and application logic

The Shopware admin interface is a powerful tool, but misconfiguration at this level
can significantly impact performance. For example, configuring category pages to
display an excessive number of products can lead to inefficient query execution
and costly rendering chains. Similarly, dynamic rule conditions and promotions
must be designed with query complexity in mind—especially when operating on
large catalogues.

Where possible, avoid relying on raw SQL-based search behaviour. Shopware PaaS
supports integration with scalable search engines like OpenSearch, which offload
search logic from the database and enable faster, more resilient querying. Properly
configuring these services helps ensure that performance remains consistent
even under high catalogue volume or complex filtering logic.

©10 - 2025 Upsun. All rights reserved. 17

9 upsun | Formerly Platform.sh

External API calls are another frequent oversight. Whether unsubscribing a user
from a newsletter or retrieving data from a third-party service, these requests
should never block storefront responses. APIs are inherently brittle—slowness or
outages can cascade across your entire system. Whenever possible, external
communications should be handled asynchronously to prevent third-party issues
from degrading the shopping experience.

Logging levels must also be adjusted appropriately for production environments.
Enabling verbose or debug-level logs in live storefronts can overwhelm disk 1/O
and delay application responses—an issue we have seen firsthand in customer
projects.

Itis also essential to review deployment logs with care. In at least one recent case,
a misconfiguration resulted in a large volume of runtime errors, which in turn
prevented Shopware-specific VCL snippets from being correctly loaded into the
Fastly cache layer. Such issues are not always immediately visible through frontend
behaviour alone. Particular attention should be given to logs related to hook
execution, as these often surface critical errors that may otherwise go unnoticed
during routine testing.

Performance as adiscipline

A recurring theme across successful Shopware implementations is the presence
of a defined performance budget. This includes measurable targets such as TTFB
thresholds, acceptable CPU usage under peak load, memory constraints, and
failure rate ceilings. These metrics should guide the development process and be
validated continuously, especially during feature additions or third-party
integrations.

Performance expectations must also be reflected in the development lifecycle.
Git-based CI/CD workflows, environment consistency (dev, staging, production),
and continuous observability are essential to detect regressions early. Teams that
rely on manual uploads or inconsistent environments often struggle to identify or
reproduce performance issues.

Preparing for critical events

Traffic peaks—whether seasonal, promotional, or unplanned—are not edge cases.
They are the real test of architectural robustness. Teams should simulate load

©10 - 2025 Upsun. All rights reserved. 18

9 upsun | Formerly Platform.sh

using realistic traffic blends, test checkout flows under pressure, and ensure that
the full application stack (including caching layers) behaves predictably under
duress. A clear rollback strategy should be in place before any campaign, with
staged deployments and observability instruments ready.

Summary

Running Shopware well is not merely about code quality—it is about anticipating
the operational realities of a production storefront. Performance must be
addressed proactively at every layer: infrastructure, configuration, application
logic, caching, and deployment processes. When treated with discipline,
Shopware can deliver excellent performance even under demanding conditions.
But this discipline must be cultivated through intentional design, testing, and
operational maturity.

Load testing methodology

To understand how Shopware PaaS performs under realistic conditions, we
designed a series of controlled load tests. These tests were not intended to
simulate edge-case stress, but to reflect real-world traffic patterns across
browsing, checkout, and APl activity. Our goal was to observe how the
infrastructure handles load, identify scaling behaviours, and extract actionable
best practices for tuning Shopware deployments.

Tooling and scenario design

We used Grafana K6 as the load testing framework, building on the
Shopware-specific K6 scenarios published by the Shopware team. The most

complete test script, reference-scenario, includes four key traffic patterns:

m browse only
o Simulates casual users or bots: homepage visits, search, category
browsing, product views.
m browse_and_buy
o Emulates a full customer journey: browsing, account creation, cart
operations, and checkout.

©10 - 2025 Upsun. All rights reserved. 19

https://k6.io/
https://github.com/shopware/k6-shopware

9 upsun | Formerly Platform.sh

m logged_in_fast_buy
o Models repeat customers: quick login and direct checkout for a
known product.
m api_import
o Represents system integrations: product imports, stock updates,
price changes.

These scenarios reflect a realistic e-commerce blend of anonymous traffic, buyer
intent, repeat usage, and backend automation.

We ran this test using, at first, the free and open-source version of Grafana K6.
However, the nature of a load test is to generate a lot of traffic. Shopware PaaS,
being a production-grade solution, has some integrated DDOS mitigation layers.
An abnormal amount of traffic coming from a single IP address is automatically
blocked by these security layers.

So, we had to switch to the commercial Grafana K6 SaaS solution. Switching to it
enables us to use different load zones, dividing the traffic by as much.

Configuration strategy

We tuned the tests to mirror production-like behaviour:
m Fixed dataset and codebase across all tests, to ensure comparability.
m Consistent cache state using Crawlee to prewarm Fastly’s HTTP cache.
m Database reset before each run to guarantee clean start conditions.

We adjusted parameters such as the number of virtual users (VUs) and the delays
(pauses) between actions to simulate natural usage, not raw concurrency:

m browse only VUs: high volume, low-intent users.

m buying VUs: kept proportional to browse traffic to simulate realistic
conversion rates.

m pauses: introduced to avoid saturation from constant back-to-back
requests.

Without these pauses, smaller plans saturated almost instantly, producing results
more characteristic of a stress test than a load test. Stress testing deliberately

©10 - 2025 Upsun. All rights reserved. 20

9 upsun | Formerly Platform.sh

pushes systems beyond their limits to expose failure modes, whereas load testing
focuses on performance under realistic traffic levels — the kind of usage a
Shopware site is expected to handle daily, including peak periods. Adding delays
allowed us to regulate intensity and better replicate human behaviour, ensuring
our measurements reflected practical conditions rather than theoretical
extremes.?

To contextualize the results, it’s important to note that our test dataset
represented a mid-sized production catalogue. It included over 10,000 products
and a realistic order volume designed to simulate stores processing tens of
thousands of orders per day. This scale ensured that performance insights were
grounded in practical use cases and applicable to typical enterprise deployments,
rather than limited demo scenarios.

Target metrics

We calibrated each test to align with several production-facing criteria:

m Conversion rate of ~3% (visitors to buyers), derived from real Shopware PaaS
customer data.

m APl requests share between 5-10% of total traffic.
m Response time target: p95 Time-to-First-Byte (TTFB) under 600ms.

m CPU usage ceiling: kept near but below 70% to reflect sustainable peak
operation.

m Errorrate: under 0.05% failed requests.

Tests were executed for 5 minutes per configuration, repeated across six different
plan types (from Grid XL to DGH) to assess scale progression.

Scenario calibration
To ensure load was both realistic and consistent:
m Visitor counts were tracked via counters in each scenario.

m A 50% bot traffic assumption was applied to browse_only.

2These changes have now officially been merged into the Shopware K6 repository, so that you can
benefit from them, too.

©10 - 2025 Upsun. All rights reserved. 21

9 upsun | Formerly Platform.sh

m APl pressure was varied to assess how cache invalidation affects system
load.

Conversion rate was calculated as:
(Visitors from browse_and_buy + logged_in_fast_buy) /

((browse_only visitors / 2) + browse_and_buy +
logged_in_fast_buy)

APl request share was calculated as:

API scenario requests / Total requests

Summary

This methodology allowed us to observe system behaviour under well-shaped,
representative traffic loads—balancing realism with precision. In the next section,
we'll present the results of these tests and show how performance scales across
infrastructure tiers.

Using Blackfire to identify bottlenecks

No matter how well you size your infrastructure or tune your caching layers,
performance bottlenecks in e-commerce applications almost always come down
to application logic. That’s where Blackfire comesiin.

Shopware PaaS includes Blackfire by default—giving you powerful tools to profile,
observe, and continuously optimise your Shopware storefronts.

Performance optimization is best approached as a continuous cycle. In many
cases, the process begins not with a known issue, but with patterns observed
through monitoring or continuous profiling. These tools help surface unusual
trends, anomalies, or regressions. Once an issue has been detected, deterministic
profiling enables teams to dig deeper—to understand precisely why a slowdown
occurs, where time or resources are being spent, and what can be improved. From
those insights, developers can define performance budgets, write targeted tests,
and automate their enforcement in CI. This section focuses on the role of
deterministic profiling within that broader cycle.

©10 - 2025 Upsun. All rights reserved. 22

9 upsun | Formerly Platform.sh

Let us now go through how to use Blackfire effectively in the Shopware context
and why it's an essential part of your optimisation workflow.

Why profiling matters
Profiling is about more than tracking load time. It helps answer questions like:
m Why does this category page spike CPU?
m What's behind this sudden |/O contention?
m Is my ERP update logic inefficient?
m Why does this plugin kill performance in staging but not locally?

Blackfire works by instrumenting requests and providing visual call graphs,
function-level timing, and resource usage insights—directly in your staging or
production environments (non-intrusively).

In Shopware projects, profiling is especially valuable when:
m Deploying new plugins or features.
m Handling high-traffic campaigns (e.g. sales, seasonal events).
m Diagnosing unexplained slowness.

m Preparing a new site for go-live.

How to profile a Shopware page

You can initiate a profile from:
m The Blackfire browser extension (Chrome/Firefox)
m The Blackfire CLIin staging or development
m Your Cl pipeline (for automated test-based profiling)
Each profile gives you:
m A flame graph of the full request lifecycle.

m Execution time per function or service.

©10 - 2025 Upsun. All rights reserved. 23

9 upsun | Formerly Platform.sh

m /O, memory,and HTTP client usage hotspots.
m Time spentintemplates, Doctrine queries, Redis calls, and plugins.
For Shopware, focus on:

m Shopware\Core\Content\ProductandProductListingRoute

m Template rendering layers

m Eventdispatchers and plugin listeners

Shopware-specific insights in Blackfire

Beyond standard profiling capabilities, Blackfire offers Shopware-specific
instrumentation that exposes performance metrics tightly aligned with the
platform’s architecture. These include precise timings for components such as
ProductListingRoute, template rendering performance, and plugin listener
overhead. These metrics are surfaced as part of Blackfire’'s custom timeline view,
enabling developers to correlate bottlenecks with specific Shopware layers. This
integration helps teams prioritize optimizations more effectively—whether in
response to slow category pages, APl routes, or admin interactions. Shopware’s
own engineering team makes extensive use of these metrics to support their
internal performance workflows, including regression detection, Cl integration,
and large-scale tuning efforts.®

Common bottlenecks in Shopware projects

Based on real usage, here are some patterns to look out for:

m Plugins with inefficient hooks
Profiling reveals plugins that hook into every request and perform
expensive logic—e.g., redundant DB lookups or external API calls.

m Overloaded product listings
Pages that render too many products or lack pagination can trigger massive
SQL queries and DOM tree rendering.

3 See Optimize your Shopware 6.x applications with new specific metrics & Meeting Uwe
Kleinmann:
Shopware performance optimization with Blackfire

©10 - 2025 Upsun. All rights reserved. 24

https://blog.blackfire.io/optimize-your-shopware-6-x-applications-with-new-specific-metrics.html
https://blog.blackfire.io/meeting-uwe-kleinmann-shopware-performance-optimization-with-blackfire.html
https://blog.blackfire.io/meeting-uwe-kleinmann-shopware-performance-optimization-with-blackfire.html
https://blog.blackfire.io/meeting-uwe-kleinmann-shopware-performance-optimization-with-blackfire.html

9 upsun | Formerly Platform.sh

m Unbatched ERP updates
Frequent product updates without batching or delay can saturate |/0,
invalidate caches, and block PHP workers.

m Verboselogging in production
As seen in the PayPal debug case, this can kill disk I/O and delay responses
by orders of magnitude.

Continuous profiling (optional)
With Blackfire Enterprise, you can enable continuous profiling, which:
m Runslightweight, always-on profilers on your live environment.
m Detectsregressionsin memory usage, I/O time, and function duration.
m Surfacesissues before they impact customers.
Thisis ideal for Shopware projects where:
m Developmentis fast-moving.
m Code may be maintained by multiple development teams.

m Unexpected performance issues can damage sales.

Integrating Blackfire into CI/CD

You can integrate Blackfire directly into your deployment pipeline:
1. Define performance assertions (e.g. “X function must not exceed Y ms”).
2. Run tests as part of your deployment or pull request builds.
3. Fail builds if regressions are detected.

This keeps performance measurable, trackable, and testable—just like functional
bugs.

Analytics extension induces downtime

Three years prior, a pilot customer for Shopware PaaS encountered significant
performance degradation, occasionally resulting in downtime lasting several
minutes, occurring multiple times monthly. These incidents transpired sporadically

©10 - 2025 Upsun. All rights reserved. 25

9 upsun | Formerly Platform.sh

throughout the day, thereby complicating the identification of the underlying
issues by the development team. Utilizing Blackfire, enabled the immediate
detection of a Statistics module employed by the customer for the aggregation of
data regarding their online store activity. This module was executing exceptionally
large queries that effectively locked the MySQL database for durations of up to 16
minutes.

Top Transactions Top Services

& rhaniak lanshatics\ContrallerBackendController:getQuickOverviewActic 129 108 5min 49 s 16 min30% 148M8

<<<<<

While such incidents are not uncommon, it is imperative to underscore the
transformative role of Blackfire. Upon the manifestation of performance
anomalies, it facilitated the rapid identification of the root cause within a matter of
minutes. Such visibility converts prolonged, speculative analyses into swift and
assured diagnoses.

Regarding recommended practices: For the execution of extensive database
queries, itis advisable to operate on a live replica of the production database,
leveraging the MySQL binary log feature. This strategy mitigates the risk of
impacting the performance of the online store.

Summary: Blackfire in your Shopware toolbox

Use case Blackfire benefit

Plugin evaluation Detect runtime costs before go-live

Slowness in category pages Reveal expensive queries and
rendering hotspots

ERP sync optimisation Profile /O and cache invalidations

Go-live prep Compare staging vs prod traces

Shopware PaaS includes Blackfire so you can go beyond “works on my machine”
and understand exactly why your store performs the way it does.

©10 - 2025 Upsun. All rights reserved. 26

https://fixed.docs.upsun.com/add-services/mysql/mysql-replication.html

9 upsun | Formerly Platform.sh

Learn more at docs.blackfire.io or the Shopware PaaS Blackfire quide.

Performance results across plans

With the load testing framework and scenarios in place, we executed tests across
seven Shopware PaaS infrastructure plans: Grid (XL, 2XL, 4XL), Dedicated Grid
Hosts (DGH16, DGH32, DGH64 and DGH128). The goal was to measure how each
plan handles real-world traffic patterns, including browsing, buying, and API
operations, and to quantify their scalability and performance characteristics.

Key metrics collected

For each plan, we collected and computed a range of performance metrics:
m Total Requests
m Failures and Failure Rate
m Peak Requests per Second (RPS)
m p95Response Time (TTFB)
m CPU Usage (Application, Redis, DB)
m Conversion Rate
m Orders per hour / day
m APl Load Share
m Virtual User Distribution per Scenario

These metrics were used to assess both infrastructure efficiency and the overall
user experience under load.

We especially and consistently aimed for a TTFB (Time To First Byte) below 600
milliseconds.* This threshold is not arbitrary: it aligns with industry standards for
excellent web performance. According to Google’s Core Web Vitals,a TTFB under

4 While Time to First Byte (TTFB) remains a key indicator for identifying backend and infrastructure
issues, it should not be the sole metric guiding performance evaluation. For a more complete
picture of perceived performance, we recommend supplementing TTFB measurements with tools
such as Google PageSpeed Insights and Chrome UX Reports. These offer broader visibility into
frontend experience and user-centric metrics.

©10 - 2025 Upsun. All rights reserved. 27

https://docs.blackfire.io/
https://developer.shopware.com/docs/products/paas/blackfire.html
https://web.dev/ttfb/
https://pagespeed.web.dev/
https://developer.chrome.com/docs/crux

9 upsun | Formerly Platform.sh

800ms is considered “good.” Our 600ms target reflects a more ambitious goal
designed to account for real-world conditions, backend processing complexity,
and variability in user devices and network speeds. Achieving sub-600ms TTFB
across realistic Shopware use cases is a strong indicator that a storefront will load
quickly, remain responsive under load, and perform well on both SEO and UX
benchmarks. It also sets a defensible baseline against which performance
regressions can be measured.

Summary of results

Plan Total Peak RPS P95 TTFB Orders/day % CPU %
CPU used failures

XL 615 32 537ms 3,060 78.4% 0.01%
2XL 1.9 553 549ms 5,680 68.6% 0.03%
4XL 134 617 549ms 6,300 67.7% 0.01%
DGH16 16 76 514ms 7560 70.2% 0.00%
DGH32 32 165.7 598ms 17,280 70.9% 0.01%
DGH64 64 459.67 578ms 41940 751% 0.00%
DGH128 128 898.33 545ms 73,260 59.6% 0.00%

Observations

1. Performance scales predictably with resources

As expected, throughput (measured in orders/day and RPS) increased
consistently with CPU allocation and infrastructure tier. Even modest plans like XL
were capable of processing over 3,000 orders/day under tuned conditions.

©10 - 2025 Upsun. All rights reserved. 28

9 upsun | Formerly Platform.sh

Throughput vs CPU Allocation by Plan
DGH128
70000 f

60000

50000

DGH64

o
o
o
o
(@

30000

Estimated Orders per Day

20000 DGH32

10000
s

XL

20 40 60 80 100 120
CPU Allocation (vCPUs)

2. p95 response time held steady

p95 TTFB remained under or near the 600ms target, confirming that Shopware
PaaS delivers responsive performance under realistic usage. But to keep this
objective, we had to cap the APl import VUs at a maximum of 5. Going over five
increased the TTFB and limited the RPS, even with the biggest plans.

©10 - 2025 Upsun. All rights reserved.

29

9 upsun | Formerly Platform.sh

p95 TTFB (Time to First Byte) by Plan

600

500

400

300

p95 TTFB (ms)

200

100

XL 2XL aXL DGH16 DGH32 DGH64 DGH128
Plan

3. APl load is expensive

APl requests, especially those that create or update products, invalidate multiple
cache layers and put stress on both the database and the Fastly edge. Even at just
5-10% of total traffic, they account for a disproportionate share of resource usage.

4. Low failure rates across all tiers

All plans maintained failure rates below 0.05%, with zero failures observed on
DGH16 and only a handful across other tiers. This demonstrates Shopware PaaS’s
resilience under consistent load.

Orders per day by plan

We estimated daily order capacity using the following formula:

Orders per hour x 12 x (100 / 89)

©10 - 2025 Upsun. All rights reserved. 30

9 upsun | Formerly Platform.sh

70000

60000

50000

Orders per Day

20000

10000

40000

30000

Estimated Orders per Day by Plan

XL 2XL axL DGH16 DGH32 DGH64 DGH128
Plan

This reflects the assumption that 80% of daily orders occur during a 12-hour peak

period. Below are the estimated order capacities:

XL: 3,060 orders/day

2XL: 5,580 orders/day
4XL: 6,300 orders/day
DGH?16: 7560 orders/day
DGH32: 17,280 orders/day
DGHG64: 41,940 orders/day

DGH128: 73,260 orders/day

Choosing the right plan

These results make it clear that while every tier is capable of supporting
production workloads, higher plans offer both headroom and predictability for
teams expecting sustained traffic or conversion surges. That said, raw
infrastructure is not the sole determinant of performance—your code,

©10 - 2025 Upsun. All rights reserved. 31

9 upsun | Formerly Platform.sh

configuration, and cache behaviour play a critical role in whether your storefront
runs fast or falters.

The next sections will explore best practices, profiling techniques, and lessons
learned from tuning Shopware in the field.

Lessons learned from the field

Over the course of supporting and evaluating numerous Shopware PaaS
implementations, several patterns have emerged that consistently distinguish
successful projects from those that struggle with performance and reliability.
These lessons, drawn from real-world experience, offer guidance on avoiding
common pitfalls and adopting practices that lead to operational stability.

Configuration must be intentional

One of the most common sources of performance degradation arises not from
infrastructure limitations, but from default or ill-considered configuration choices.
This is particularly evident in cases where category pages are set to display too
many products, leading to expensive database queries and excessive template
rendering. In other instances, logging levels were left at debug in production
environments, introducing significant /O contention and response time delays.

Projects that perform well tend to exhibit a high degree of intentionality in their
setup. Pagination settings, logging verbosity, cache invalidation behaviour, and
plugin configurations are all explicitly tuned to support performance, not simply
left in their default state.

Plugin usage requires vigilance

While Shopware's extensibility is a strength, it also introduces risk. Third-party and
custom plugins frequently account for the majority of runtime overhead in poorly
performing storefronts. Thisis not due to malice or incompetence, but simply the
complexity of integrating diverse behaviours into a shared runtime.

A plugin may introduce hooks that trigger on every request, perform redundant
database operations, or interfere with cacheability. Teams often underestimate the
cumulative cost of such extensions, especially when multiple plugins interact with
the same lifecycle events. High-performing projects treat plugins as runtime

©10 - 2025 Upsun. All rights reserved. 32

9 upsun | Formerly Platform.sh

components to be evaluated and, where necessary, replaced or disabled—not just
installed.

Caching is central, but often undervalued

Caching remains the single most effective strategy for performance improvement
in Shopware. However, its success depends on deliberate implementation. The
architecture must support cacheability, including the use of GET methods over
POST, proper cache headers, and URL structures that avoid unnecessary variation.

In many cases, performance issues stem not from an absence of caching, but from
cache invalidation processes triggered by unbatched ERP updates or
administrative changes. Projects that succeed in maintaining performance under
load are those that manage invalidation carefully, employ soft purge strategies,
and avoid unbounded cache refresh cycles during business hours.

Performance testing must be realistic

Several underperforming projects had previously undergone performance
testing—but in environments or conditions that failed to reflect actual usage.
Effective testing requires more than synthetic requests; it demands representative
traffic blends, realistic conversion rates, appropriate delays between actions, and
accurate replication of backend behaviours.

This also includes your CDN. While including Fastly in the load test may seem
controversial, itis in fact essential. Fastly is a key component of the runtime
environment—excluding it prevents early detection of issues such as large-scale
cache purges or invalidation patterns. On Shopware PaaS, each staging
environment comes with its own dedicated Fastly service. Make sure it’s correctly
configured, and use it actively during UAT (User Acceptance Testing) to validate
real-world caching behaviours before go-live.

Testing that omits elements like APl imports, bot traffic, or concurrent checkout
processes may fail to reveal scalability bottlenecks until they manifestin
production. Realistic load simulation is critical not only for infrastructure sizing, but
for understanding how services interact under stress.

©10 - 2025 Upsun. All rights reserved. 33

9 upsun | Formerly Platform.sh

Operational discipline drives resilience

Successful Shopware projects are characterised by their adherence to operational
discipline. CI/CD pipelines are in place, staging environments match production,
monitoring and alerting are configured, and rollback procedures are well-tested.
Conversely, projects that rely on manual deployment, irregular updates, or
inconsistent environments tend to experience avoidable instability and
regressions.

This extends to campaign preparation: peak traffic events are treated as technical
milestones, not just business opportunities. High-performing teams rehearse
traffic scenarios in advance, prewarm caches, monitor system metrics throughout,
and ensure rollback readiness.

Collaboration is essential

Finally, it is worth emphasising that achieving consistent performance in Shopware
is not solely a matter of technical configuration—it is also a question of
collaboration. Many of the most effective resolutions we have seen were the result
of early engagement between development teams, infrastructure specialists, and
support engineers. Performance issues often span concerns that no single
stakeholder fully owns. Bringing expertise together early prevents avoidable
missteps and enables faster, more comprehensive resolutions.

Summary

The most consistent lesson from the field is this: Shopware performanceis a
shared, continuous responsibility. It is shaped not only by infrastructure size or
application code, but by how thoughtfully a projectis configured, extended,
observed, and operated. High-performing projects are those that approach
performance as a design concern, an integration concern, and an operational
concern—never as an afterthought.

This is especially evident when looking at real-world deployments. In one case, a
misconfigured payment plugin logging at debug level generated excessive disk
I/O, severely slowing the site. Another project experienced regular site freezes due
to an analytics module issuing long-running SQL queries that locked the database.
One customer even generated over 500 million cache invalidations per day

©10 - 2025 Upsun. All rights reserved. 34

9 upsun | Formerly Platform.sh

through unbatched ERP updates, leaving the cache perpetually cold and negating
the performance benefits of edge caching entirely.

In contrast, projects that achieved stable, fast response times shared certain
habits: they employed tools like Blackfire to locate bottlenecks, used deferred or
soft purging to manage cache invalidation intelligently, and maintained close
alignment between ERP updates and cache regeneration strategies. They didn’t
wait for performance to degrade — they designed for it, monitored it, and treated it
as part of their delivery pipeline.

These patterns consistently underscore the same point: Shopware’s defaults are
not always suitable for large-scale ecommerce, but performance can become
exceptional with the right operational mindset.

Conclusion and next steps

The results of our testing and field experience demonstrate that Shopware can
perform exceptionally well—but only when supported by deliberate infrastructure
decisions, thoughtful architectural patterns, and disciplined operational practices.
Shopware PaaS provides a stable and scalable foundation, but the responsibility
for performance extends far beyond the infrastructure itself. It reaches into every
layer of development, configuration, integration, and deployment.

This white paper has outlined what distinguishes high-performing Shopware
projects from unstable ones. From tuning PHP-FPM sizing to managing cache
invalidation, from reviewing plugin behaviour to preparing for peak traffic events,
the lessons are consistent: performance is not something to be retrofitted—it
must be designed and maintained.

What you can do next

If you are evaluating Shopware PaaS, or currently running Shopware on any
infrastructure, we encourage you to reflect on the following:

m Review your caching strategy: Is it intentional, layered, and actively
prewarmed?

m Audit your plugin stack: Have runtime impacts been measured and
reviewed?

©10 - 2025 Upsun. All rights reserved. 35

9 upsun | Formerly Platform.sh

m Validate configuration: Are your sizing hints and logging settings
appropriate for production?

m Replicate traffic: Have you tested your storefront under realistic user
behaviour and concurrency levels?

m Standardize deployment: Are CI/CD pipelines and rollback proceduresin
place?

m Use environment variables for configuration: Ensure that differences
between production, staging, and development environments are handled
via environment variables. Shopware PaaS makes this easy—and doing so
helps avoid deployment-time surprises and misconfigurations.

m Protect your infrastructure: Ask about the Fastly Next-Generation WAF
and our Edge Rate limiting features (available in option) to mitigate risks of
resource abuse.

m Centralize your logs and audit them: All Shopware PaaS plansinclude the
log forwarding feature (available on all architectures). Ship your logs to your
favorite tools (Sumo Logic, Splunk, New Relic and rsyslog supported) and
audit them regularly. MySQL , PHP often

contains critical information you should not ignore.

Performance excellence is not reserved for large teams or enterprise budgets—it is
the result of engineering discipline applied consistently.

Pre-launch readiness checklist

Before taking a Shopware storefront live, or launching a major feature or campaign,
the following conditions should be confirmed:
[J Product and category listings are paginated and optimized for efficient SQL
queries (e.g. limits, indexing).
[J Plugin and extension performance has been profiled; unnecessary or slow
plugins are disabled or deferred.
[J Logging levels are correctly set for production (no debug logs unless

needed for short-term diagnostics).

©10 - 2025 Upsun. All rights reserved. 36

https://fixed.docs.upsun.com/increase-observability/logs/forward-logs.html

9 upsun | Formerly Platform.sh

[J ERP and external synchronisations are batched and scheduled outside peak
shopping hours.

[J API-driven cache invalidations are delayed, batched, or throttled to

preserve cache efficiency (Shopware = 6.7).

[Cache prewarming isin place for key landing pages and navigation flows
(homepage, categories, etc.).

[0 HTTP cacheisworking: X-Cache headers return HIT for expected routes.

MISS anomalies are investigated.

[J The volume of cache invalidations per day remains within expected
bounds—investigate spikes.
[Infrastructure capacity has been sized for realistic peak load, with CPU
usage staying below ~70% under test.
[J Load tests have been run using realistic traffic mixes, device types, and
session behaviours (not just synthetic spikes).
[J CI/CD pipelines are tested and produce deterministic builds in staging and
production.
[0 Monitoring and alerting are enabled for:
[J Application-level metrics (response time, error rate)
[0 System-level metrics (CPU, memory, disk 1/0O)
[J Business-critical flows (checkout, search, login)
[J Deployment logs are reviewed for uncaught exceptions or failed hooks.
[J 3rd-party integrations (e.g. payment gateways, PIMs, CRM) are monitored
for availability and latency.
[Security headers and HTTPS enforcement are tested (e.g. Content Security
Policy, HSTS).
[J SEO-critical pages (homepage, categories, product detail) are crawlable

and performant under PageSpeed Insights.

While not exhaustive, this checklist reflects the key operational patterns we have
found essential to stability, performance, and long-term success.

©10 - 2025 Upsun. All rights reserved. 37

https://github.com/shopware/shopware/blob/trunk/UPGRADE-6.7.md#delayed-cache-invalidation

9 upsun | Formerly Platform.sh

Final note

Throughout this guide, we've seen that high Shopware performance doesn’t result
from infrastructure alone—it is the product of intentional design, disciplined
engineering, and operational maturity.

Shopware PaaS is built on Upsun, a cloud application platform that combines
scalable infrastructure, native observability, and developer-first tooling. With
features like built-in CI/CD, configurable environments, and integrated support for
profiling tools such as Blackfire, Upsun provides a robust foundation for
sustainable performance at scale.

But just as importantly, we don’t stop at the contract line. Our teams work directly
with agencies and merchants to surface misconfigurations, troubleshoot
bottlenecks, and share best practices drawn from real-world deployments.
Whether it’s shaping cache invalidation behaviour, optimizing catalog indexing, or
tuning PHP limits for large datasets, we work alongside you to get it right.

Performance, when treated as a shared responsibility, becomes a competitive
advantage. The principles in this paper are not theoretical—they are field-tested
and accessible. Whether you're maintaining one storefront or many,
improvements in caching, configuration, and deployment discipline can yield
measurable impact.

Start small. Choose one domain—cache behaviour, plugin management,
deployment workflows—and inspect it with performance in mind. If you're already
using Shopware Paa$, our support teams are ready to help you go further. If you're
evaluating the platform, we invite you to connect.

©10 - 2025 Upsun. All rights reserved. 38

9 upsun | Formerly Platform.sh

Appendix

This appendix provides supplementary information to support the content
presented throughout the white paper. It includes configuration examples, testing
assumptions, calculation formulas, and reference links for teams seeking to
replicate or adapt the testing and optimisation strategies described.

Load testing setup and parameters

Sample virtual user configuration

The number of virtual users (VUs) per scenario was tuned to achieve a realistic
blend of browsing and buying behaviour while respecting CPU usage thresholds
and conversion rate targets.

browse_only Anonymous traffic, 150
including bot patterns

browse_and_buy New customer flow 5

logged_in_fast_buy Repeatcustomer 5
quick purchase

api_import ERP-originated 5
product updates

©10 - 2025 Upsun. All rights reserved. 39

9 upsun | Formerly Platform.sh

Pause settings

To simulate human interaction pacing:

Scenario Default pause

browse_only 300 ms
browse_and_buy 500 ms
api_import 10 ms

These delays prevented artificial saturation and better modelled production usage.
Performance metric calculations

Conversion rate

Calculated as a proportion of buying visitors over adjusted total visitor volume:

(visitors_browse_and_buy + visitors_logged_in_fast_buy)

((visitors_browse_only / 2) + visitors_browse_and_buy +
visitors_logged_in_fast_buy)

A 50% bot share was assumed in browse _only traffic.

Orders per Day

Orders per hour were projected into daily throughput based on an 80/20 peak
traffic model:

orders_per_day = (orders_per_hour x 12) x (160 / 80)
This assumes 80% of orders occur during a 12-hour peak window.
Sample configuration snippet (.platform.app.yaml)

Tuning PHP-FPM concurrency through memory sizing hints:

©10 - 2025 Upsun. All rights reserved. 40

9 upsun | Formerly Platform.sh

None

runtime:
extensions:
- redis
directives:

memory_limit: 512M

web:
commands:
start: |

php-fpm -F

sizing_hints:
request_memory: 24

reserved_memory: 70
These values inform automatic calculation of pm.max_children by the Upsun
runtime.

Shopware Performance tweaks

Following the official performance tweaks documentation, we applied the

following changes:

Sending mails with the Queue:

None

config/packages/prod/framework.yaml

+framework:
+ mailer:
+ message_bus: 'messenger.default_bus'

©10 - 2025 Upsun. All rights reserved.

41

https://developer.shopware.com/docs/guides/hosting/performance/performance-tweaks.html
https://developer.shopware.com/docs/guides/hosting/performance/performance-tweaks.html#sending-mails-with-the-queue

9 upsun | Formerly Platform.sh

Prevent mail data updates:

None
config/packages/prod/shopware.yaml

+shopware:

+ mail:

+ update_mail_variables_on_send:

Increment storage:

None

config/packages/paas.yaml

+ user_activity:

+ user_activity:

+ type: 'array'
+ message_queue:

+ type: 'array’

©10 - 2025 Upsun. All rights reserved.

false

42

https://developer.shopware.com/docs/guides/hosting/performance/performance-tweaks.html#sending-mails-with-the-queue
https://developer.shopware.com/docs/guides/hosting/performance/performance-tweaks.html#sending-mails-with-the-queue
https://developer.shopware.com/docs/guides/hosting/performance/performance-tweaks.html#sending-mails-with-the-queue
https://developer.shopware.com/docs/guides/hosting/performance/performance-tweaks.html#sending-mails-with-the-queue
https://developer.shopware.com/docs/guides/hosting/performance/performance-tweaks.html#sending-mails-with-the-queue
https://developer.shopware.com/docs/guides/hosting/performance/performance-tweaks.html#increment-storage
https://developer.shopware.com/docs/guides/hosting/performance/performance-tweaks.html#increment-storage
https://developer.shopware.com/docs/guides/hosting/performance/performance-tweaks.html#increment-storage
https://developer.shopware.com/docs/guides/hosting/performance/performance-tweaks.html#increment-storage
https://developer.shopware.com/docs/guides/hosting/performance/performance-tweaks.html#increment-storage
https://developer.shopware.com/docs/guides/hosting/performance/performance-tweaks.html#increment-storage
https://developer.shopware.com/docs/guides/hosting/performance/performance-tweaks.html#increment-storage
https://developer.shopware.com/docs/guides/hosting/performance/performance-tweaks.html#increment-storage

9 upsun | Formerly Platform.sh

Recommended tools and resources

m Blackfire Documentation
https://docs.blackfire.io

m Shopware PaaS Blackfire Integration
https://developer.shopware.com/docs/products/paas/blackfire.ntml

m Grafana K6 (Open Source)
https://k6.i0

m Shopware K6 Scenario Repository
https://github.com/shopware/k6-shopware

m Crawlee (for cache prewarming)
https://crawlee.dev

m PHP-FPM Runtime Tuning (Upsun)
https://fixed.docs.upsun.com/languages/php/fom.html

©10 - 2025 Upsun. All rights reserved.

43

https://docs.blackfire.io
https://developer.shopware.com/docs/products/paas/blackfire.html
https://k6.io
https://github.com/shopware/k6-shopware
https://crawlee.dev
https://fixed.docs.upsun.com/languages/php/fpm.html

	
	Document information
	Title
	Authors
	Reviewers
	Publishers
	Version
	Last revised
	License
	Keywords
	Contact

	Table of contents
	
	Executive summary
	Glossary
	Term
	Definition

	Who should read this paper and why
	Common challenges we’ve seen
	■​Plugin complexity and fragility
	■​Poor cache invalidation behavior
	■​Composable frontends and uncacheable APIs
	■​Lack of DevOps standardization

	Why this paper exists
	If you're asking questions like...

	How Shopware really performs (and why it matters)
	Performance is a variable
	Real-world example: debug-level logging
	Common pitfalls behind performance issues
	■​ERP integrations that trigger cache invalidations
	●​Excessive personalization
	■​Lack of performance budget

	Cache is king
	Summary

	Understanding the infrastructure options
	
	Grid plans (XL, 2XL, 4XL)
	Dedicated Grid hosts (DGH-16, DGH-32, DGH-64, DGH-128)
	Dedicated plans (D-12, D-24, D-48, D-96, D-192)
	Dedicated split clusters
	
	Choosing the right option
	Scenario
	Recommended option

	Best practices for high-performance Shopware
	Infrastructure and runtime configuration
	Caching strategy
	Advanced cache features in Shopware

	Extension and plugin management
	Admin configuration and application logic
	Performance as a discipline
	Preparing for critical events
	Summary

	Load testing methodology
	Tooling and scenario design
	■​browse_only
	■​browse_and_buy
	■​logged_in_fast_buy
	■​api_import

	Configuration strategy
	Target metrics
	Scenario calibration
	Summary

	Using Blackfire to identify bottlenecks
	Why profiling matters
	How to profile a Shopware page
	Shopware-specific insights in Blackfire
	Common bottlenecks in Shopware projects
	■​Plugins with inefficient hooks
	■​Overloaded product listings
	■​Unbatched ERP updates
	■​Verbose logging in production

	Continuous profiling (optional)
	Integrating Blackfire into CI/CD
	Analytics extension induces downtime
	Summary: Blackfire in your Shopware toolbox
	Use case
	Blackfire benefit

	Performance results across plans
	Key metrics collected
	Summary of results
	Plan
	Total CPU
	Peak RPS
	P95 TTFB
	Orders/day
	% CPU used
	% failures

	Observations
	1. Performance scales predictably with resources
	​2. p95 response time held steady
	3. API load is expensive
	4. Low failure rates across all tiers

	Orders per day by plan
	Choosing the right plan

	Lessons learned from the field
	Configuration must be intentional
	Plugin usage requires vigilance
	Caching is central, but often undervalued
	Performance testing must be realistic
	Operational discipline drives resilience
	Collaboration is essential
	Summary

	Conclusion and next steps
	What you can do next
	Pre-launch readiness checklist

	Final note
	
	Appendix
	Load testing setup and parameters
	Sample virtual user configuration
	Scenario
	Description
	Typical VU count (DGH64)

	
	Pause settings
	Scenario
	Default pause

	Performance metric calculations
	Conversion rate
	​Orders per Day

	Sample configuration snippet (.platform.app.yaml)
	Shopware Performance tweaks
	
	Recommended tools and resources

